Exercise 5

Solve the differential equation.

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
4\left(r^{2} e^{r x}\right)+4\left(r e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
4 r^{2}+4 r+1=0
$$

Solve for r.

$$
\begin{gathered}
(2 r+1)^{2}=0 \\
r=\left\{-\frac{1}{2}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-x / 2}$ and $x e^{-x / 2}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-x / 2}+C_{2} x e^{-x / 2},
$$

where C_{1} and C_{2} are arbitrary constants.

